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A class of robust algorithms for the computer simulation of stochastic differential equations 
with multiplicative noise is investigated. Excellent agreement is obtained with the known 
analytic behaviour of the Kubo oscillator in the white noise limit. The algorithms include a 
known first-order one-dimensional explicit method, as well as implicit methods of increased 
stability. A distinction is drawn between classes of stochastic differential equations depending 
on the type of spatial variation or curvature defined by the diffusion tensor. This allows 
greatly simplified numerical implementations of the new algorithms in certain cases. The 
results of different techniques are compared for the case of the Kubo oscillator, where a semi- 
implicit technique gives the greatest accuracy. ‘h’ 1991 Academic Press, Inc. 

1. INTRODUCTION 

Computer simulations of stochastic differential equations [l] offer a powerful 
technique for obtaining information in statistical physics. Analytic techniques are 
often only useful in the linearised, small noise limit of nonlinear problems. This 
limitation can be overcome by the technique of direct computer simulation. 
Stochastic equations are even more interesting in view of the well-known 
equivalence between a Fokker-Planck equation and a stochastic equation. 
Since Fokker-Planck equations with large dimensionality are difficult to analyse 
numerically, stochastic equations offer a useful alternative technique. 

In practical terms, there are relatively few well-understood numerical algorithms 
for these types of calculation. The numerical problem is particularly acute for 
stochastic equations obtained from Fokker-Planck equations, as these involve 
infinite-bandwidth noise sources. The theoretical work of Ito [Z], Stratonovich 
[3], and others has defined precisely how to mathematically interpret the singular 
noise sources that occur. This requires some modification of standard calculus 
techniques in the case of Ito’s approach. Thus, the mathematical properties of 
stochastic equations are relatively well known. 

Nevertheless, the numerical simulation of these equations has not been studied 
with the same detail as for non-stochastic equations. In particular, the usual limit 
of small step size has a different behaviour in the stochastic case from that in 
differential equations with continuous source functions. As the step size becomes 
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The quantitative numerical comparisons use the Kubo oscillator to illustrate the 
differences. This exactly soluble equation is one of the simplest nontrivial examples 
of multiplicative stochastic noise. The results show that in this case the ItooEuler 
algorithm has the worst local error performance and is especially error-prone for 
higher order moments. A first-order explicit algorithm obtained from Taylor expan- 
sions has improved local errors, but is worse in terms of error-propagation for long 
times or large time-steps. A first-order fully implicit method has similar errors, 
although it would be more stable for cases of stiff differential equations. The 
smallest errors were found with the semi-implicit or central difference algorithm. 

2. STOCHASTIC EQUATIONS 

We consider a general multiplicative stochastic differential equation in N 
variables. of the structure 

$ x;(t)=ai(c, X)+x b,(t, X) <i(t), 
i 

(2.1) 

where 

(i’;(t) (Jr’)), = 6,6(t - t’). 

Here tj(t) is a delta-correlated real Gaussian process with zero mean, and xi is a 
real or complex variable. The equation has a wideband noise source, which is typi- 
cal of stochastic differential equations obtained from a Fokker-Planck or similar 
equation. The notation ( ), is used here to denote an average over an infinite 
population of the random sources tj. We use this notation to distinguish theoretical 
infinite population averages from the finite population averages used in numerical 
simulations. (In statistics the notation of a hat “A ” is sometimes used to indicate 
the statistics of a finite sample.) 

The case of Lorentzian noise can also be treated in this general way. In this case, 
the noise sources have extra equations of the above form. The solutions to the addi- 
tional equations have a Lorentzian spectrum. These then occur as source terms in 
the physical equations. Thus Eq. (2.1) can be used to treat a wide variety of 
interesting problems. It is applicable to both wideband and finite bandwidth noise 
sources. 

Equation (2.1) can be regarded either as an Ito [2] or as a Stratonovich [3] 
type of stochastic equation. These are both commonly found in applications. A 
Stratonovich equation is typically obtained as the physical wideband limit of a 
finite bandwidth equation. Equation (2.1 j is therefore taken in this paper as a 
Stratonovich equation, as this is often more relevant in statistical physics. 
Nevertheless, an Ito equation can always be calculated from Eq. (2.1). An Ito 
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process is defined as the limit of a sequence where the multiplicative term is 
evaluated at the start of any finite time interval and can be written as 

d 
z 

xi(r,=a:(t, x,+x b,(L xi d,‘irb. 
J 

IIere the I indicates an Ito process; the process equivalent to Eq. (2.1) has 

i 3.3 i I- 

We note the presence of an extra term in the drift, called the Ito term, w!uch 
compensates for the non-anticipating nature of Ito stochastic processes. 

As an example of a Stratonovich equation. we consider the case of the Kubo 
oscillator [6] with a stochastic frequency. This has a typical equation of the ior-5: 

Since the equation is the wideband case of a physical oscillator, it must be regarded 
as a Stratonovich equation [l]. For this reason ordinary calculus techniques of 
variable changes can be used in solving this equation‘ We note that Kubo oscillator 
equations of arbitrary noise strength can be written in this form, by 
resealing in (t). 

Equation ( 2.4) has a direct solution on taking logarithms: 

Here t(r) is a Gaussian process, and the result can be iterated over finite time 
intervals At, = t,, + 1 - t,, to give 

where 

(A W’“’ A W”“‘), = AI,,~,,, 

Since A IV(“) is a real Gaussian random variable of zero mean and known variance, 
it can be readily simulated numerically. The exact solution for x(:,) at any point is 
obtained on simply iterating Eq. (2.5b) over successive time intervals, for each given 
random sequence A W’“‘, as in Fig. 1. Here we set 01~ = 1. The Gaussian raridorn 
numbers are generated using a standard numerical subroutine, distributed by NAG 
(Numerical Algorithms Group), which implements Brent’s algorithm [7]. 
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Exact solutions for the phase of a Kubo oscillator, with wO= 1, Ji=O.Ol. FIG.~. 

It is straightforward to demonstrate from this result that the value of any 
stochastic moment (.P) 3. over all possible trajectories x(t), is given by 

(Cx(~)l”‘>, = (C~~~hJln2)m e [ii?xtJ~ ~ mT’2] I (2.6) 

Hence any moment of any order is calculable over an infinite population of 
stochastic trajectories. All the moments decay to zero exponentially, with a rate 
dependant on the order of the moment. Thus we have analytic results describing 
either individual stochastic trajectories or moments of an infinite number of 
stochastic trajectories. We note, of course, that individual trajectories have a 
constant modulus, while the average amplitude has a modulus that decays to zero. 

A more general case, also of the type of Eq. (2.1), is the Kubo oscillator with 
finite bandwidth noise source [S]. In the case of Lorentzian noise, this can be 
written as a pair of equations: 

$ x(t) = ix(t) o(t) 

(2.7) 

This set of equations still has the form of Eq. (2.1), which is therefore suitable for 
either finite or wide bandwith noise. 

The solution for o( t j over a finite time interval is 

w(t) = epkr e”‘?o( to) + k [’ ekr’[co,, + t(t’)] dt’ . 
- 10 1 (2.8a) 
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ence the corresponding solution for x(t) can be written as 

log(x( t)/x(t,)) = i 1’ o(t,) e -kkr’ - ir)J dr’ 
” &I 

This equation shows that even cases of coloured noise, or equivalently, systems 
of stochastic differential equations, can also be treated exactly. 

In general it is much more difficult to obtain solutions of stochastic equations ir: 
closed form when there are nonlinearities present, although some exactly so?uble 
cases exist. In most cases, numerical approximations need to be introduced, giving 
rise to algorithms that are valid only in the limit of Bt,, --f 0. One procedure fDc?r 
numerically solving these equations is based on the definition of the Hto equation, 
since this can be defined as the limit of an Euler [9] algorithm for small step size. 
Let x(“’ be defined at discrete times T,~. The resulting Ito-Euler algorithm is known 
to have strong convergence to order (At)‘,” in the sense of mean square error, and 
10 have weak convergence to order (dr) in the sense of moment generation 
[IO, 111~ We therefore term this method a weak explicit met?lod: 

Weak explicit: ds:.“’ = a!(t,!, x’~~‘) dr, + 1 5,(t,,, xl”‘) J JV)pz!; (2.9) 

where 

A@‘= y(,“+l) 
. I ’ I 

- .$I 

At,=t,+,-i,,. 

Here d 1V02) is a real Gaussian random variable with zero mean and variance d!,, 
as before. The solution to Eq. (2.2) is recovered on letting dt,: + 0. We show later 
that the Stratonovich process of Eq. (2.1) can be defined as in Eq. (2.9), with 
df,, --+ 0, and with the functions a, b defined implicitly at X = 1/2[x(“’ + xin+‘)!. T?;.e 
numerical implications of this definition will also be treated. 

A careful simulation of Eq. (2.4) including the correction term of Eq. (2.3 ) lzads 
to the results graphed in Fig. 2. The actual algorithm graphed is the Ito-Euler 
equation corresponding to Eq. (2.4). Thus, the technique used is 

In these graphs the results are compared by calculating the error relative to exact 
stochastic trajectories generated from identical underlying noise sources. With t5is 
procedure, the finite step size or discretization error can be readily distinguished 
from the finite population or sampling error. To allow direct comparisons at two 
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different step sizes, results with a step size of 2 At are obtained from those with a 
step size of At by adding pairs of adjacent A W’“’ values. Thus the stochastic 
processes can be compared directly in all cases. This comparison method is more 
reliable in computing step size effects than calculating mean values, which generally 
leads to much greater dispersion. In other words, we plot the mean error, rather 
than the error of the mean, in these graphs. Plots 2a and 2b are numerical averages 
over finite populations. 

It is clear from Fig. 2 that the global or longtime errors due to the finite stepsize 
reduce with smaller values of At. This numerical work demonstrates that the Ito- 
Euler algorithm can be used in the white-noise limit, provided the step sizes are 
very small. The numerical studies leading to Fig. 2 are in agreement with the known 
properties of the Kubo oscillator shown in Fig. 1. These results appear to be at 
variance with recent claims [S] that the Ito-Euler algorithm is inapplicable to the 
Kubo oscillator. Unlike these earlier simulations, there is no rapid decay here in 
individual Kubo oscillator amplitudes, although there is a decay in the average 
amplitude. 

A further demonstration of the correctness of the Ito-Euler method is obtained 
on analytically calculating the mean value over an infinite population of trajec- 
tories, and comparing it to Eq. (2.6). The mean squared error can also be calculated 
in a similar way. We find that, after n steps, with x(O) = 1, 

(.‘c(“)), = (1 + (iwo- l/2) At)” (2.11) 

and 

- 2 Re((l + (im, + $) At)” c-“(~~~+~‘~‘~~). 

This expression for the mean agrees precisely with Eq. (2.6) on taking the limit of 
At + 0 and n + ,x, so that n At = t. The mean squared error also clearly vanishes 
in this limit, showing that the algorithm can reproduce individual trajectories as 
well as the mean value of the amplitude. 

In Figs 2c and 2d we compare the results of using Eq. (2.10) over finite samples, 
with analytic results for the mean square error in the infinite sample limit. It is clear 
that the analytic discretization error predictions of Eq. (2.11) are subject to a 
sampling error which varies approximately as iI,,&, where N is the number of 
stochastic trajectories that are averaged. This behaviour can be regarded as generic 
to stochastic problems. ItooEuler algorithm results will be treated in greater detail 
in later sections. 

For comparison purposes, the solution was also computed with a time-reversed 
Ito algorithm. This is obtained simply by reversing the time-direction of the algo- 
rithm in Eq. (2.10) and applying it to the time-reversed equation for the Ito 
oscillator. We note that the Kubo oscillator equation is a Stratonovich equation, 
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FE. 2. Average error, (Is’ - .Y/ ). where x’ is the weak explicit or Ito-Euler soluiion of Eq. (7.11). 
Graphs show (1.~ -.sI) for 10 trajectories with We= 1, ~It=0.;. 0.05 i Fig. 2s) and dr = 0.01. 0.005 
(Fig. Zb). Figures 2c and 2d show the mean squared error in the mean compared to the exact, ir$nite 
sample result. Figure ?c has 100 and 10,000 trajectories aith It = 0.1. Figure Zd has iO0 and lC.000 
tra.jectories with AI = O.O!. In each case. the solid line is the predicted error in the hmit of an inkire set 
of trajectories. 

and so foliows the usual calculus rules in time-reversal. The resulting algorithm i:: 
as foliows : 

~~~‘~+l)=[l-~~f--(Wg~r+~~,~I’~J)]~~ly”’:~ 13 .3’ 
,‘..--,p 

A thorough treatment of these types of implicit algorithm is given in Sectisc 5, 
where we show this is a special case of a general weak implicit method. The resm1i.s 
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of using Eq. (2.12) are shown as the dotted curve in Fig. 3, where it can be seen that 
the errors are comparable to the normal Ito algorithm (solid curve). 

It is interesting to note the close relationship between the discretization error and 
the Ito correction term. A Kubo oscillator has a circular trajectory on the complex 
plane, and a direct Euler simulation of the Stratonovich equation is always 
tangential to the circle of motion. This leads to a trajectory with rapidly increasing 
radius. Since the random source becomes relatively larger than At as At+ 0, the 
uncorrected error term does not vanish in the limit of At + 0, when integrated over 
a finite time. Instead, it must be compensated for by the Ito correction term of 
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Eq. (2.3). This cancels, on average, the otherwise growing amplitude of t 
trajectory. Thus the Ito-Euler or weak explicit method is stochastically correct only 
to order (4 W c ~4r”~) in the strong sense of individual trajectories. giving an overal! 
accuracy to order (4 t, 4 W) in our notation. 

3. TAYLOR EXPANSION METHODS 

While the Ito-Euler procedure is mathematically correct, it is numerically inef- 
ficient. Even worse, Euler procedures are numerically unstable [9] unless extremely 
small step sizes are used. This lack of robustness leads to increased discretization 
error and long computation times. For this reason, a number of alternatives to the 
Ito-Euler method have been suggested. These are reviewed by Kloeden and Plam 
[tl]. One type of alternative is a generalised Runge-Kutta [Q-14] algorithm. 
These algorithms are of higher order than the [tooEuler one. Explicit Runge-Kctta 
methods, however, can lack robustness in their deterministic error-propagation 
properties, especially for stiff differential equations [ 151. Despite this, these schemes 
give excellent local error performance, although it is known that the maximum 
order possible is limited. 

Another proposed alternative is an explicit method like the ItooEuler algorithm. 
except with stochastic correction terms [l&18] that replace the Ito correction. 
This technique is essentially an implementation of a stochastic Taylor expansion 
1x91~ In this paper, we intend to treat algorithms suitable for multidimensional 
cases. Stability properties are therefore of especial importance, due to the possibility 
of stiff equations. For this reason, both implicit and explicit algorithms are treated. 
These algorithms are generally of higher stochastic order than the ItoPEuler algo- 
rithms, i.e., typically of order (dr, 4 W’). They also prove to have much smaller 
errors than the Ito-Euler method for higher-order moments, even though the Ito- 
Euler method is known to converge to order (4r) in the weak sense of momen; 
generation. The error-reduction is due to the fact that the stochastic error terms of 
o’(4 W’) in the Ito-Euler algorithm can lead to large discretization errors in higher 
moments, which do not vanish when averaged over the trajectories. We note that 
in calculating moments numerically, there are also sampling errors due to fin::e 
populations. These are largely invariant with regard to the algorithm, so that we 
shall focus on the discretization error in most of the numerical results. 

The algorithms treated in this paper are obtained directly using the Stratonovich 
equation, rather than going through a transformation to the lto form. This allo$vs 
the use of ordinary calculus to compute the results. It is also possible to produce 
implicit algorithms. These are known to have generally increased deterministic 
robustness when compared to either Euler or RungeeKutta methods. The question 
of stability is especially important for stochastic equations. as the trajectories even- 
tually map out all regions of the equation’s phase space, including any region of 
numerical stiffness. In these regions an unstable algorithm can diverge, leading ;o 
incorrect or divergent global averages over ali trajectories. Here we use the 
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deterministic terminology, although in stochastic equations Eyapunov exponents 
should be used to define stability properties. 

It is therefore essential to choose numerical methods which are relatively stable 
in all regions of phase space. In particular, when there are nonlinearitles in xhe 

coefficients a, b, the step size requirements for explicit methods can vary widely: 
throughout phase-space. It is likely that for some equations there is in faci no finite 
step size that allows stable behaviour of the discretization error throughout phase 
space. This can lead to even more stringent requirements on a, b than those for the 
existence and uniqueness of the stochastic equations [I. 121. The problem i.s made 
more severe by the fact that the stochastic terms :anish only as idi/’ ’ as ri;-+G 
so that these terms become relatively larger as dt + 0. 

In order to overcome these problems, an analytic solution to Eq. (2.1) is obtained 
here which is approximately valid in each time interval (t,!, t,,, ,). The first step is 
to linearize the coefficients a. b, as functions of x. A Taylor expansion in x around 
an intermediate point Xi”’ between x”” and xi”+” is calculated. where 
,Wl = FXlii+ I) > + (1 - ~1 x”“. Hence, defining z”‘) =x - gr’l’, 

where 

Letting Ax’“‘= x’~~‘)- x(“) as before, it is clear that z’~‘~(r,l) = --G Ax”” ana 
n’p’!(r,, c 1 ) = (1 - E) dx(“!. The solution to Eq. (3.1) is immediate and gives he result: 

where 

This formal technique still requires that we obtain the solution of Eq. (3.25 which- 
involves solving for U, and then integrating. In some cases, Eq. t 3.2 j car, be treated 
exactly. Thus, in the case of a linear stochastic equation, an exact solution 0~1 
Eq. (3.2) generates a numerical algorithm without any truncation error ?c all o:rder: 
in (At). Approximate techniques for more general cases using stochastic T;ryior 
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expansions will be given later. These calculations will only be taken here to first 
order in the Taylor expansion, for simplicity. However. a higher order expansion is 
also possible 1191~ 

An exactly soluble example is the Kubo oscillator of Eq. (2.5). Here. 

f(t)=a(((r)+Oo) 
i 3.3 ] 

g(t)=i(<(r)+io,). 

The solution for U( t, t,) is then: 

U(t. to) = exp i fr (o,+ i’(r’)) d:‘. 
- 10 

The overall solution for x’” + lJ given x(“) is independent of X. It is obtained most 
readily on setting E=O, which gives 

Here d IV’“) is a Gaussian random number with variance At,, as in Eq. (2.10). 
This result agrees precisely with the earlier analytic solution. Even though the 

random process -y(r) is known only at discrete sampling times I,, the values 
obtained correspond to full solutions of the original stochastic equation. The results 
are accurate to all orders in (At), apart from possible numerical round-off errors. 
Thus, for example, all trajectories calculated this way have l.~“‘~j = 1 if /xii’1 = ! 
initially. By comparison, the Ito-Euler simulations of Fig. 2 can only maintain the 
modulus jsCiZil = 1 in the mean over short time intervals. For any step size 3t. she 
Ire-Euler algorithm generally results in trajectories with a slowly growing modulus 
over sufficiently long times. It is clear that at least for linear equations, it is possible 
10 use the method of Eq. (3.2) to generate numerical trajectories of much greater 
accuracy than the Ito-Euler technique can offer. While the Kubo oscillator exa:2pie 
is a relatively simple one, its exact numerical solution indicates the possibilit:i oY 
more powerful algorithms. 

4. EXPLICIT ALGOF.ITHMS 

The formal result of Eq. (3.2) allows a iarge variety of numerical techniques to be 
generated in more general cases. These are obtained by different choices of the 
reference point X and of methods of evaluating U,. If the choice E = 0 is made wirh 
X =x(“‘, an explicit method is obtained similar to the usual Ito-Euler algorithm. 
but with greater accuracy. We first rewrite .A g by expanding them about the 
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appropriate point in time t;, , corresponding to X’n’, where i, = .st, + I + (1 - E) t, for 
the nth step. Thus, for the 12th step, 

(4.1) 

where the coefficients ai, a,, 6,, b, are defined as 

Lli=ai(i,, P) 

t?,=b,(r,, X’“‘) 

a _ 
aik=d.u, ai(frz, x)lx=~(nl 

The solution then requires the calculation of ujk, which is obtained from 
Eq. (3.2). This has the iterative solution: 

In order to collect terms in Eq. (3.2) to order (At), it is necessary to include expres- 
sions in c(t) up to order t2, since these occur in double integrals whose average 
value is of order (At). This requires that the first time integral in Eq. (4.3) is 
retained. Hence, to the lowest relevant order, Eq. (3.2) can be rewritten as 

Next, this can be further simplified on dropping the last term, since E = 0 for the 
explicit case, 

Ax;“’ = a, At,, + 1 6, A W;” 

+ c c E,, AH’;,“! + O(At”‘), 
.i i' 

(4.5) 

where 
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and 

A W !” ) = 
JJ’ 

i”,(t) tjJr’) dt’ cit. 

Since the result is correct to order (At, A W’), it is accurate to higher stochasric 
order than that given by the Ito-Euler algorithm. The explicit result of Eq. (4.5’a 
was first obtained by Milstein [16] for an N-dimensional stochastic process. Rae 
et al. [17] have given a similar result accurate to O(At2j. Due to the *ae of 
Stratonovich calculus, the present derivation is obtained simply using standard 
integration of the equations in a similar way to the derivation of Sancho e? al. [LS]. 

It is useful to calculate the mean value of the last term in Eq. (4.51, to understand 
its relationship to the Ito-Euler algorithm. Clearly, since ti(z) is uncorrelared with 
tkltj? 

Thus the term in Cijj. corresponds in the mean to the Ito correction term whrch 
would be included in CZ’ in the Ito stochastic process. This demonstrates that the 
Ito-Euler algorithm, which is of order A WY (AC)“’ for mdividual trajectories, does 
give mean values that are locally correct to order (A;). This is expected in view of 
the known weak convergence to order (At) of the Ito-Euler method [IO]. 

In order to utilise the improved equation, it is necessary to generate the time- 
ordered stochastic integrals A WJ;.). These are correlated with A Wj”‘. For ease of 
computation A W$.’ is divided into a symmetric component and an antisymmetric 
component. The symmetric part is simplest to evaluate, since 

f.,l *In-l 
[AW;‘+ AW;!t’] = s ! <,((fj tj (t’) dt rzt’ 

f. I,! 
= A @lflli A&‘;:‘:, 

J 
1,4.7) 

The antisymmetric part A:;.’ is uncorrelated with AR”“’ and can be evaluated 
numerically using random number generation techniques. The overall result for 
AW!“? is that 

JJ 

where 

Techniques for the efficient generation of these antisymmetric time-ordered 
stochastic integrals are treated in Kloeden and Platen [II]. In many cases of 
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interest the matrix ciii. is itself symmetric in j and j’, as in the case of the Kubo 
oscillator. This is known as commutative stochastic noise [20, 211. In these situa- 
tions it is unnecessary to evaluate the antisymmetric stochastic term Al;.‘. This 
implies that only the original random set A lVjn) with variance At,, is required at 
each time step. In the general case with an explicit algorithm (E = 0) the following 
result is obtained [16], which is strongly convergent to order (At): 

Strong explicit: dx~‘*) = a(t,,, ~(‘1’) At,, + 1 b,(t,,, x(‘l)) d kv;‘*) 

+; c -& c,,(t,, x(‘*))(AW;“‘AW’~‘+,4$‘). (4.9) 
I h 

With this algorithm, the normal Euler approximation to the Ito equation is 
replaced by an improved method that includes all stochastic terms of order (Atj. By 
comparison, the ItooEuler method of Eq. (2.9) includes stochastic terms only to 
order (A IV), together with a correction term which gives the mean derivative 
correctly to order (At). For the Kubo oscillator, it is clear that Eq. (4.9) reproduces 
the exact result of Eq. (3.4) correctly to order (A W)‘, for each individual trajectory. 
However, Eq. (2.10) only reproduces individual trajectories to order (AH’). The 
strong explicit algorithm in the Kubo oscillator case is 

.dn + I) = (1 + i(d W’“’ + w. At) - i( A W’“‘)‘) dn’. (4.10) 

The effect of the higher order correction is shown to be a relatively large one in 
Fig. 3, where errors are calculated by comparing individual trajectories in this algo- 
rithm with those in the exact result. It is obvious that Eq. (4.9) is of greater 
accuracy for small step sizes than Eq. (2.9). The error is, of course, zero in the exact 
algorithm of Eq. (3.4). Of more interest are the increased long-term errors in the 
calculation that are obtained with larger step sizes. These long-term errors are due 
to a faster growth in the Kubo oscillator amplitude in the Milstein algorithm, 
relative to the Ito-Euler case. This causes an increased relative error-propagation 
rate which is not immediately apparent from a local analysis of the truncation 
error. 

In summary, the strong explicit algorithm of Eq. (4.9) corresponds to the Ito- 
Euler algorithm only in the mean. For each individual stochastic trajectory, this 
algorithm generates individual trajectories which are accurate to order (At). By 
comparison, the Ito-Euler method reproduces individual trajectories accurately 
only to order (At)“’ and neglects correction terms of order (At). These neglected 
correction terms have zero mean, but can obviously change the variances in an 
ensemble average. Thus the Milstein technique can reproduce higher order 
moments with increased accuracy relative to the Ito-Euler method. However, its 
global error-propagation properties are worse than those of the Ito-Euler algorithm 
for the Kubo oscillator, especially with larger step sizes. The strong explicit algo- 
rithm is therefore unsuitable for stiff equations, where error instabilities are a 
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serious prob!em. G theorem on global convergence properties with one-step 
approximations is proved by Milstein [22]. The Milstein theorem states that, under 
suitable conditions, an algorithm whose local mean square error is of order pz will 
produce a global mean square error of order p7 where 

p=p2-i. 44.1 1 ,i 

This holds in the case that the stochastic equation coefficients (,a, h) arc constrained 
by the Lipschitz condition 

b, = (h,, h,, b,/ . . j. 

While this is applicable to the Kubo oscillator case, we note that in phys:cs 
applications the functions appearing often have faster than linear growth rates. 

5. IMPLICIT ALGORITHMS 

In this case of E >O, the calculation of each step requires knowledge of the 
endpoint, x(” L I). This type of numerical method is known as an inzplicil one and 
generally requires the solution of a set of simultaneous equations at each step in 
time. Typically, such methods have greatly improved numerical stability, at the cost 
of some increase in the number of computations required. In the case of stochastic 
trajectories, there is already a relatively large overhead required to compute a set 
of random numbers A Wj”’ at each point. The small extra cost of using an imphcit 
method can therefore be justified in terms of improved accuracy and stabrhry. 
Milstein [14] has also derived implicit schemes of a different type. Implicit deicr- 
ministic schemes are used extensively [23]. 

By choosing E = 1, a fully implicit technique is obtained with X’“’ = xlPi + I’. These 
types of method are known to have excellent determmistic stability with respect to 
error propagation in cases of stiff differential equations [S]. For E = $, the resulting 
semi-implicit methods correspond closely to the natural definition of a Stratonovich 
process. In this case %(‘)= ~[x(“‘+x(“+~‘], so the method is a central di 
approximation. This algorithm is accurate to order (A!)’ in the low-noise limit and 
has a wide area of application. 

In the fully implicit case, Eq. (3.2) can be rewritten as 
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It is useful here to note that U, has the elementary multiplication properties: 

Provided U,(t,, t,) is invertible, its inverse can be written as U,(t,, t2), so that 
Eq. (5.2) applies for all values of (t,, t2). This defines { 17) as a group for each 
particular stochastic trajectory and allows Axj (n’ in the fully implicit case to be 
written as 

Ax!” = 1 jzn+’ 
U,(t,, t) fi(t) & 

j In 

where U,(t,, t) c 6,-l:,, gij(t’j dt’ (t > t,,). Hence, a result similar to Eq. (4.9) is 
found, which is correct to order (At, AW2): 

Strong implicit: d~j”j = a,(t,+ 1, x@+“) At,, + c b,(t,,+ L, xc”+ ‘)) AW;“’ 

x(‘~+‘))[AW/(~’ AWjf-A$‘]. (5.4) 

We see that Eq. (5.4) is a time-reversed version of Eq. (4.9). In fact, this is 
a stochastic Taylor expansion around the future point xCn+‘). Note that the 
symmetric correction term changes sign, while the antisymmetric term A, has the 
identical sign to the explicit case. 

Here, a, 6,, and Cijk must be evaluated at the future point xi’*+‘), which generally 
requires the use of iterative techniques to compute the value of Ax. As in the 
Milstein case, the algorithm is simplified when Ciik is symmetric, giving commutative 
stochastic noise. 

For the Kubo case, since the equation is linear, the numerical algorithm corre- 
sponding to Eq. (5.4) is 

x(” + I) = (1 - i(A W’“’ + w. At) - $(A W’“‘)‘) - ’ xcnJ. (5.5) 

This is easily seen as corresponding to a binomial expansion of the inverse of the 
exponential in Eq. (3.4), where terms are collected to order (LIW(“))~. The results 
are shown in Fig. 3. This method has similar errors to the strong explicit algorithm 
at small stepsize, but is more stable in the case of larger stepsize. 

It is also possible to define a time-reversed version of the Ito equation, by 
replacing the stochastic products in Eq. (5.4) by their mean value. This gives the 
following algorithm, which can be recognized as a time-reversed or implicit Ito- 
Euler method: 

Weak implicit: dxjnJ= a,(rnfl, xc’+‘))--i & ciii(tnfl, xc”+‘) 
J 

+‘t 

+c bg(tn+,, x(“+~) AWj”‘. (5.6) 
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In the Kubo oscillator case, Eq. (5.6) generates Eq. (.X12), with numencai results 
that are shown in Fig. 3. Clearly, this behaves very similarly to the ordinary Ito 
Euler method. As this method uses an implicit evaluation of the derivative, it can 
be expected to be more stable for the case of stiff equations. even though I: is 
correct only to order (At, A W). The time-reversed or implicit Ito method does no1 
appear to be mentioned widely in the literature. However, it is likely to have a. 
wider domain of stability than most other methods currently in use. 

Finally, suppose an intermediate point is utilised for the algorithm, with E = f. In 
this case, Eq, (3.2) can be written as 

This generates a semi-implicit method that is symmetric in time and strongly 
convergent to order (Ar). Going through a similar calculation to that already 
obtained gives the following result, correct to order (A?, 3 I&” ). 

Strong semi-implicit: AX)“’ = c(J~,~, %lfl;) At, + 2 b,(f,,, %(n!) A ll’-l”’ 

In this case the term in Au’)“’ A WY’ is identicail~ zero. In cases of commutative 
noise, the antisymmetric noise terms can give no contribution either. I’doting that 
the antisymmetric terms .4$’ have zero mean, we see that a weak semi-implicit 
method is obtained by omitting these terms, even if the noise is non-commutetive. 
This leaves the simple result 

Weak semi-implicit: Axj”j = a,(i,,, ifi”‘)) Ar,, + c h,(i,,, fii_Oz)) A FS’.:“‘. (5.9) 

This algorithm now corresponds precisely to a standard implicit algorithm for 

solving differential equations. However, as usual, A WC”) scales with (Al)‘,’ instead 
of At. With regard to the terms in Ar only, the semi-implicit tvpes of algorithm are 
of higher order than the earlier ones. They are correct to O(At’) in the limit of zero 
stochastic noise. More generally, even with non-commutative noise, Eq. (5.9) is stih 
weakly convergent and therefore useful in generating moments, since the residual 
second-order noise term is of zero mean. This has been suggested as a stochastic 
method suitable for more general partial-differential space-time equations [24], as 
well as for stochastic time-domain problems [25, 261. Thus, Eq. (5.3) generares 
an algorithm that is convergent to at least O(At’, A W] in ail cases, and to 
O(Ar’, A W’) in the case of commutative stochastic noise. In the non-commutative 
noise case, it can be expected to behave in a generally simi1a.r way to the Ito-Euler 
and time-reversed Ito-Euler methods, which are also correct to Ojd W). H~we*~er. 
it has a lower error in the deterministic limit. 
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TIME 

FIG. 3. Comparison of error performance of algorithms as in Fig. 2, for 100 trajectories. Figure 3a 
shows the error for rlr=O.l. Figure 3b shows the error for dt =0.05, Fig 3c for d/ =O.Ol, and Fig. 3d 
for dr = 0.005. The key to the lines is as follows: - (weak explicit); (weak implicit); --~ (strong 
explicit); -. - (strong implicit ); -. -~ (semi-implicit). 

In order to show how to utilise Eq. (5.91, consider an elementary Newton type 
of root-searching method, where ti, and 6, are expanded to lirst order in Ax’“’ 
around xc”). In this case, 

A<y;“‘=c [G(x’“‘)],’ 
1 

QX(“)) Ar, +I b,,(x’“‘) A WII” > (5.10) 
i k 

where 

Gn(X’“))=dij-t& U,(X)At,+C b,(x)AWr . 
/ k II x =xlnl 
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This is exact in the case of the Kubo oscillator, which is linear in X. For comparison 
with Eq, (X4), Eq. (5.10) can be rewritten for the Kubo oscillator as 

This can also be obtained directly using Eq. (3.4j. In fact, it can be readily 
verified that this expression agrees with the exact solution of Eq. (3.4) to all orders 
up to (A W”))‘, but has a lower error than before to order (A CY’“‘)‘. The third-order 
coefficient is 0.25, compared to the correct coefficient of 0.17 and a coefficient of O,O 
in the previous algorithms. The algorithm is also exact to order (AI)’ in th.e limit 
of low notse (i.e., ignoring the term in A IV’“’ ). The results are of good accuracy and. 
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stability, which is shown in Fig. 3. Both the short term and long term errors are 
greatly reduced in comparison with the other approximate algorithms. 

More generally, for nonlinear equations, Eq. (5.10) can be improved by using 
iterative techniques which generate successive estimates of dx@+“. A number of 
iterative procedures are known for this nonlinear root finding problem. Thus, in the 
Newton method, the p-th estimate of Ax(“) can be written dx’“‘[,u], where 
dx’“‘[,~ + l] is obtained from dx(“)[~] on solution of the set of linear equations, 

T G,[p][AX;‘yu + 11 - Ax,!“‘[p]] = &[p] At,i + c b&l] A WPI, (5.12) 
k 

where 

G,[p] = G,(x’“‘+ +Ax’“‘[p]) 

ai [p] = ai(x(m’ + + Ax’“‘[p]) 

biJp] = bik(X”” + 4 Ax’“‘[p]). 

In cases of large computational complexity, Gij can be replaced by its initial value 
at xc’). Alternatively, the secant rule or quasi-Newton techniques [9] can be 
utilised for solving the implicit equations. This technique is also applicable, with 
appropriate adaptions, to Eq. (5.8). In general these techniques can modify the error 
bounds when a finite number of iterations are used. However, this is easily checked 
in practise by varying the number of iterations. 

As a precautionary note, it is necessary for the implicit equations to have a solu- 
tion in the neighbourhood of the previous point. In order for these methods to 
provide sensible results, the step size At must be reasonably small. Even with small 
At, the distribution of A W implies that large A W will occur with finite probability. 
For sufficiently large A W, it is likely that the inverse matrices will have a 
singularity. This implies that the Gaussian distribution of A W could need to be 
truncated for these methods. Of course, as At is reduced, the error caused by the 
truncation approaches zero rapidly, since the truncation points can be increased 
relative to the standard deviation. In the computer-generated results obtained here, 
no truncation was necessary. 

6. SUMMARY 

A class of algorithms for the computer simulation of multiplicative stochastic 
processes is presented. The algorithms are based on an exact solution of the 
linearized equations over a short time interval, without using time-domain Taylor 
expansions. Instead, the expressions used here can be regarded as generalised 
stochastic Taylor expansions [27]. The parameter E used in the algorithm defines 
the degree of implicitness. In fact, E can be regarded as effectively interpolating 
between the usual Ito and Stratonovich type of differential equation, as well as 
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extending these to include a fully implicit or time-reversed Ito equation. The chief 
difference between these algorithms and the usual Ito-Euler type is that the 
stochastic corrections to order (At) are computed exactly for each trajectory, rather 
than just in the mean. We treat three algorithms that are only weakly convergent 
to Ojd:), and three that converge strongly to Ojdl), giving improved accuracy 
overail. 

The higher-order algorithms are generally accurate only with small time-steps. 
The strong explicit or Milstein method can show worse long-term characteristics 
than the weak explicit or Ito-Euler algorithm due to error propagation, when the 
time-steps are relatively large. The implicit algorithms of either order are preferable 

Tl b.! E 

TIME 

FIG. 4. Comparison of the calculated modulus ( /.Y’I ) for the five approximate algorithms Figxe aa 
has (uO = I, dr = 0.01, with 100 trajectories. The key is as in Fig. 3. Figure 4b has identical paramerers. 
except with d t = 0.005. 
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for equations that are stiff or unstable when using explicit methods. The greatest 
accuracy in the Kubo oscillator case is obtained for the symmetric or semi-implicit 
case of Eq. (5.9). This case also corresponds to a second-order method in the 
deterministic limit and therefore is especially useful in cases of low noise. We note 
that other classes of algorithm or different stochastic equations could give rise to 
alternative optimal methods. 

Detailed comparisons of the present algorithms are given in Figs. 3-6, for the 
case of the Kubo oscillator. We note that in this case the weak and strong methods 
of semi-implicit type are identical, as the stochastic noise is commutative. Here 
Fig. 3 graphs the mean error characteristics for four different step sizes, showing 

0 2 4 6 a 10 

TIME 

FIG. 5. Comparison of estimated moments for the algorithms. Plotted are the errors in the mean 
I<s) - (x’)l in Fig. 5a and of the sixth moment, 1(x6> - <(s’)~)\, in Fig. 5b. Here wO= I, At=O.Ol. 
with 10,000 trajectories. Key as in Fig. 3. Figure 5b includes a time-domain smoothing of the graph over 
every 20 adjacent points, to improve visibility. 
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TIME 

FZG. 6. In Fig. 6a and Fig. 6b I(. u’)-(x),I and I(x’)~>-(.Y~)~~ are plotted; i.e., they are the 
errors relative to the infinite sample result of Eq. (2.6). The combined truncation error and sampiing 
error are shown for (I)” = i, At = 0.01. These results are for 100 trajectories. while Figs. 6c and 6d show 
results for 10,000 traJectories. These figures include a time-domain smoothing over every 20 atilacent 
points, to improve visibility. The key to the lines is as in Fig. 3. 

how the relative performance alters with step size. The ensembie used was of 100 
distinct trajectories. For larger step sizes, the error-propagation problem is signifi- 
cant for all except the semi-implicit method. We note that the strong explicit or 
Milstein algorithm has the worst error-propagation rate for larger step sizes. 
Figure (4) shows the behaviour of the calculated modulus. None of the algorithms 
shows the rapid decay in the modulus which was obtained in an earlier simulation 
[g]. In addition the symmetric or semi-implicit method has jsl = 1 always, which 
agrees with the exact result. Two-different step sizes are compared, with identical 
underlying noise sources, to demonstrate the reduction in error with reduced step 
size. 
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0 2 4 6 a 10 

FlG. 6-Continued 

Figures 5a and b show the error in the first- and sixth-order moments. Here the 
ensemble size had to be increased to 10,000 trajectories, to reduce the sampling 
error. Even so, the errors in the sixth-order moment showed large fluctuations, and 
the graphs are time-averaged over 20 neighbouring time-domain points to improve 
visibility. The results were checked in double precision (14 digit) arithmetic to 
ensure that round-off error was negligible. The weak explicit or Ito-Euler and weak 
implicit algorithms perform poorly for higher-order moments, since these methods 
have errors of order (df)‘~‘” for individual trajectories, although the mean values are 
correct to order (Al). Thus the errors in the mean are comparable with the other 
algorithms, but the higher order moments have much larger errors, for a given step 
size, even though they converge with the same order as the mean. In all cases 
treated, the semi-implicit algorithm has the smallest discretization error. 
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Calculating stochastic moments on a finite population necessarily results in addi- 
tional random sampling errors relative to the ideal infinite population results. From 
the central limit theorem it follows that these random errors typically scale with 
~li~“~ for N samples. As the error is approximately uniform for all algorithms or 
step sizes, we have graphed only the discretization errors so far, by comparing dis- 
cretized and exact results over identical finite populations. However? the choice of 
step size needs to be combined with an appropriate choice of population size, in 
order to obtain optimal moment estimates. We therefore show the total error in the 
calculated moments, including sampling error. in Figs. 6a-d. These are obtained for 
100 and IO.000 trajectories at a stepsize of 4t = 0.01. The results show that with this 
relatively small choice of step size, the mean value errors are largely dominated by 
the underlying sampling errors, which are similar for all algorithms. owever, the 
sampling error in the higher order moments is strongly dependent on the algorithm 
chosen. The semi-implicit algorithm generally has the lowest total error, especially 
for the smaller populations. It is interesting to note that, for the higher order 
moments, the weakly convergent algorithms have much larger sampling errors than 
the strongly convergent methods. 

In conclusion, the higher-order algorithms obtained here give much smeiie; 
errors than the ItooEuler method, especially when calculating higher order 
moments. The strong implicit method is probably the most stable in the case of stGf 
equations. We note that it is also possible to obtain a weak implicit method using 
a time-reversed Ito-Euler algorithm. This also can be expected to have good 
stability properties. However, the semi-implicit method gives the least discretization 
error and the least sampling error for the Klubo oscillator. It therefore appears 
preferable for this problem. 
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